
Modeled infiltration rate distributions for U.S. housing

Introduction

Building ventilation rates are primary determinants of
indoor contaminant levels and hence occupant expo-
sure, as well as energy consumption for heating and
cooling (ASHRAE, 2009; Persily, 2006). The ventila-
tion or air change rate of a given building is a
function of its layout and configuration, envelope
airtightness, weather conditions, the design and
operation of its ventilation systems, and occupant
activities (Concannon, 2002). As a result of these
dependencies, ventilation rates in a given residential
building can vary over a range of 5–1 or more. The
ventilation rate of a building under specific conditions
can be measured; many measurement studies are
listed in the references to the chapter on Ventilation
and Infiltration in the ASHRAE Fundamentals
Handbook (ASHRAE, 2009). These measurement
studies tend to involve only a small number of

homes, which are not representative of the broader
housing stock, and typically include a relatively small
number of measurements in each home. However,
because of the variability in ventilation rates, devel-
oping a complete characterization of a given building
requires numerous measurements, which can be costly
and time consuming. Modeling is an easier means of
determining building ventilation rates under specific
conditions but requires reliable input data (ASHRAE,
2009). In either case, measurement or modeling, the
ventilation data generated apply only to the specific
building being considered. If typical or representative
ventilation rates are needed, consideration of a single
building or a small group of buildings will not
provide such information.
Distributions of ventilation rates for a characteristic

group of buildings are needed to perform an exposure
assessment. The EPA Exposure Factors Handbook
(EPA, 1999) presents summary statistics of residential
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ventilation rates. However, the analyses on which those
statistics are based are derived using a dataset that is
not representative of the U.S. housing stock (Pandian
et al., 1998). In addition, there are methodological
issues associated with the measurement technique
employed to collect those data, as discussed later in
this paper.
To enable more representative analyses of ventila-

tion and indoor air quality issues in U.S. residences, a
collection or �suite� of homes was defined to represent
the housing stock of the United States (Persily et al.,
2006). This collection of dwellings is based on two
residential housing surveys, the U.S. Department of
Energy Residential Energy Consumptions Survey
(RECS) and the U.S. Census Bureau American
Housing Survey (AHS), both of which are conducted
periodically to characterize the U.S. housing stock
(DOE, 1999; HUD, 1999). The RECS dataset includes
about 6000 U.S. residences and the AHS about
60,000. Based on these datasets, just over 200 dwell-
ings were defined that together represent 80% of the
U.S. housing stock. These dwellings are grouped into
four categories: detached, attached, manufactured
homes, and apartments. Among the key characteris-
tics used to define these dwellings are age, floor area,
number of floors, foundation type, and presence of a
garage. In addition, as part of the effort to define
these dwellings, multizone representations of the
dwellings were created in the airflow model CON-
TAM (Walton and Dols, 2005) and are available for
analyses of residential ventilation, indoor air quality,
and energy issues.
The study presented in this paper involves using this

set of dwellings to generate annual distributions of
building infiltration rates for use in exposure analysis
and other applications. The manner in which climate
and air handling system operation are considered in
the analysis are described, and the results are pre-
sented by region of the country, building type, and
building age. The resulting distributions are then
compared with measured data from two previous
studies (Pandian et al., 1998; Wilson et al., 1996). It is
important to note that the results presented in this
paper are infiltration rates, which account for uncon-
trolled air leakage through building envelope leaks
that is caused by weather effects and building equip-
ment operation. These infiltration rates do not include
natural ventilation, airflow through intentional open-
ings such as windows, or outdoor air intake through
mechanical ventilation systems. While air change rates
that consider these other effects would be desirable,
their determination would require data on these
building features and occupant usage patterns that is
currently not available. Also this study is based on
surveys from the late 1990s and therefore does
not fully reflect the current housing stock. However,
as new surveys are completed and analyzed, this

collection of house models and the distributions can
be updated.

Methods

The multizone airflow model CONTAM is used to
perform hourly simulations over a year to generate
infiltration rate distributions for the representative set
of 209 dwellings. To produce nationwide frequency
distributions, these annual simulations are conducted
for a range of U.S. climates. These simulations also
account for the impacts of ventilation system operation
on infiltration rates, which vary by climate as well as by
dwelling and system configuration.

Building models

As noted above, the analysis in this paper employs a
previously described collection of residences that was
developed to represent the housing stock of the United
States (Persily et al., 2006). These dwellings are
grouped into four categories: detached, attached,
manufactured homes, and apartments. The character-
istics used to define these dwellings include floor area,
year built, number of floors, foundation type, whether
or not they have a forced air distribution system, and
presence of a garage. The apartments are also defined
by the number of units in the building. The details of
the dwellings are described in the referenced report.
One of the key characteristics affecting the analysis is

the envelope airtightness. The year of construction is
used to assign the exterior wall leakage based on data
from two studies of airtightness on single-family homes
(Chan et al., 2003, 2005; Sherman and Dickeroff,
1998). The exterior wall leakage for each home is
defined as a function of both year built and house floor
area as described in Persily et al. (2006) and presented
in Table 1. The exterior wall leakage values are
expressed as a dimensionless normalized leakage area
based on the effective leakage area at 4 Pa as
determined from a whole building fan pressurization
test normalized by the floor area of the house (ASH-
RAE, 2009). In the simulations, the leakage is assumed
to be uniformly distributed over the exterior envelope.
Although the leakage distribution can impact buil-
ding air change rates, there is insufficient data avai-

Table 1 Exterior wall leakage in modeled homes

Year built

Normalized leakage area (dimensionless)

Floor area <148.6 m2 (1600 ft2) Floor area >148.6 m2 (1600 ft2)

Before 1940 1.29 0.58
1940–1969 1.03 0.49
1970–1989 0.65 0.36
1990 and newer 0.31 0.24
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lable in the literature to justify other than a uniform
distribution.

Climate selection

Nineteen US cities were selected to represent the
climates of the nine US census divisions and the US
climate in general. According to the 2000 US Census
(US Census, 2005), the total US population was
281,421,906. This population is broken into nine
geographic divisions as shown in Table 2. The US
Census Bureau also reports the populations of metro-

politan statistical areas (MSAs) (OMB, 2005). The
purpose of the MSAs is to more accurately estimate the
number of people living in an urban area rather than
using only the city population. In this study, the
weather of each census division from Table 2 is
represented by two or three MSAs in that division
that are selected based on the climatic variability within
the division. The specific cities are based on the MSAs
with a population of 250,000 or greater.
For each division, the most populous city plus one or

two additional cities are chosen to represent the entire
census division. The cities are chosen to represent all
cities in the division that have a similar climate, based
on the number of heating (HDD) and cooling (CDD)
degree days in each city according to the following
process. First, the difference between the number of
HDD and CDD between each city in the division and a
candidate representative city is calculated and weighted
by population. Next, the average of these weighted
differences is calculated for the census division. The
representative cities are then chosen among the candi-
dates to produce the smallest values of this weighted
average.
Table 3 shows the Census divisions, the cities chosen

to represent them, and the relevant climate and
population data. HDD and CDD are given in terms

Table 2 US census divisions and populations

Census division Population in 2000 % of US population

New England 13,922,517 5.0
Middle Atlantic 39,671,861 14.1
East North Central 45,155,037 16.0
West North Central 19,237,739 6.8
South Atlantic 51,769,160 18.4
East South Central 17,022,810 6.0
West South Central 31,444,850 11.2
Mountain 18,172,295 6.5
Pacific 45,025,637 16.0
Total 281,421,906 100.0

Table 3 Population and climate data for representative cities

Census division
City

HDD
�C day

CDD
�C day

HDT
�C

CDT
�C

Population (%)

Division covered (%)Of division Of US

East North Central
Chicago 3607 464 )20.6 31.5 20.8 3.34 87.1
Cincinnati 2689 672 5.1 32.4 4.6 0.73 12.9

East South Central
Nashville 2032 920 )11.3 33.3 8.2 0.50 70.0
Birmingham 1179 1045 )7.4 33.7 6.4 0.38 30.0

Middle Atlantic
New York City 2636 644 )10.7 31.7 47.2 6.65 77.8
Buffalo 3718 304 )16.6 28.7 2.9 0.41 22.2

Mountain
Phoenix 625 2327 2.9 42.3 20.4 1.32 47.1
Denver 3404 386 )18.6 31.6 12.8 0.83 52.9

New England
Boston 3128 432 )13.5 30.9 31.8 1.57 79.6
Worcester 3795 206 )17.0 28.1 5.6 0.28 20.4

Pacific
Los Angeles 714 837 6.6 26.9 28.7 4.59 71.1
Seattle 2564 107 )4.6 27.3 7.0 1.13 28.9

South Atlantic
Miami 86 2435 7.9 32.4 10.4 1.91 30.4
Washington 2222 867 )8.9 33.3 9.9 1.83 40.9
Atlanta 1571 1006 )7.3 33.1 9.1 1.67 28.7

West North Central
Minneapolis 4379 388 )26.1 31.0 16.2 1.11 41.3
St. Louis 2643 867 )16.7 33.9 14.4 0.98 58.7

West South Central
Dallas/Ft. Worth 1317 1428 )6.7 36.8 18.1 2.03 80.0
Corpus Christi 526 1943 )0.3 34.5 1.3 0.15 20.0

HDD, heating degree days; CDD, cooling degree days; HDT, heating design temperature; CDT, cooling design temperature.
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of a base temperature of 18.3�C (NOAA 2002).
Heating design temperature (HDT) is the temperature
that is exceeded for 99.6% of hours in a typical weather
year (ASHRAE, 2009). Cooling design temperature
(CDT) is the temperature that is exceeded during 1%
of hours in a typical weather year (ASHRAE, 2009).
Population is shown as a percentage of the division and
of the entire United States. The �Division covered�
value in the last column indicates the percentage of
each division represented by each of the 19 cities. These
percentages are calculated as the sum of all cities over
250,000 in the division that are represented by this city,
divided by the total population of all cities over
250,000 in the division. Thus, for each division, the
percent of the division covered by the two or three
cities chosen to represent it is 100%.
The 19 cities in Table 3 contain 31.4% of the total

US population. Therefore, this analysis uses the correct
city to account for nearly one third of the US
population. Table 4 presents statistics describing how
well these 19 cities represent other cities in their
respective divisions. For each division, the percent of
the population that resides in cities larger than 250,000
varies from 51% to 92%. These values are also shown
as a percentage of the total US population; overall,
approximately 77% of the US population resides in
cities larger than 250,000 people. The �weighted aver-
age degree day difference� is the population-weighted
average of the number of degree days in each city
subtracted from the number of degree days in the city
used to represent it in this analysis. Thus, a positive
value means that the representative cities have more
degree days (in the case of heating the representative
city is colder; for cooling the city is warmer) than the
cities in the division that they represent. A negative
value indicates that the representative city has fewer
degree days (warmer for heating; cooler for cooling)
than the cities it represents. On a weighted average

basis, almost all of the divisions are represented by
cities that are within 100 HDD or CDD of the actual
weighted average of cities larger than 250,000. For the
overall United States, the weighted average HDD are
only about 5�C days colder than the 19 representative
cities, and the weighted average CDD are 25�C days
cooler than the 19 representative cities.

Air handling system modeling

Air handling systems for the 209 prototype residences
are defined to provide 6.1 l/s m2 of conditioned supply
air (ASHRAE, 2005), with no outdoor air intake.
Because residential heating and cooling systems do not
generally introduce outdoor air, they do not influence
air change rates when the supply and return airflows to
and from the conditioned volume are equal. However,
when there is significant air leakage in the air distri-
bution system to or from unconditioned spaces (e.g.
attics and garages), system operation will impact the
building air change rate. The building models include
the effects of duct leakage in a manner that depends on
the house layout and system type. These models also
account for the influence of fan operating time as it
determines the impact of duct leakage, because duct
leakage only impacts the air change rate when the fan is
running. Fan operation is simulated using the control
capabilities within CONTAM as described below.
For the apartments, as well as the detached, attached

and manufactured homes with finished basements, any
supply and return duct leakage is assumed to exist
inside the conditioned space. The supply and return
airflows are therefore balanced for these houses and do
not impact the building air change rate. It is therefore
not necessary to account for duct leakage in these
cases. Detached and attached houses with uncondi-
tioned basements are modeled with balanced supply
and return leakage in the basement (each as 10% of the
total system supply flow rate). The air change rates
calculated by CONTAM include flow from the ambi-
ent to zones that are designated as �conditioned space�.
Because these basements are considered uncondi-
tioned, flow between these spaces and the conditioned
volume affects the air change rate calculation, and the
calculation must account for both the supply and the
return leakage.
Detached, attached, and manufactured houses with-

out basements all have supply duct leakage into the
attic, again 10% of the total system supply airflow. If
these houses also have an attached garage in which the
air handling system is located, an identical return
leakage airflow is located in the garage; otherwise, no
return leakage is modeled. When there is duct leakage
in the attic and garage (both of which are considered
unconditioned space), the infiltration of the condi-
tioned portion of the house increases because the
garage is more closely coupled to the house than the

Table 4 Census division summary information

Census division

Cities larger than
250,000

Weighted average
degree day difference

Percent of
division
population

Percent of US
population

HDD
�C days

CDD
�C days

East North Central 69.3 11.1 8.4 38.1
East South Central 51.0 3.1 )15.0 )45.1
Middle Atlantic 89.8 12.7 6.6 )1.6
Mountain 73.3 4.7 24.3 73.8
New England 83.5 4.1 )51.7 3.4
Pacific 91.8 14.7 )38.2 7.8
South Atlantic 76.4 14.0 53.3 65.3
West North Central 57.3 3.9 )39.3 32.3
West South Central 73.3 8.2 8.7 41.9
Overall Unites States 76.6 )4.8 24.8

HDD, heating degree days; CDD, cooling degree days.
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attic. This situation slightly depressurizes the house
relative to the outdoors and increases infiltration. In
this case, both the supply and the return leakage flows
are modulated using controls to account for part load
operation, i.e., when the air handler is not operating
100% of the time.
When there is supply leakage in the attic with no

return leakage in the garage, it is assumed that the
return ductwork is all contained within the conditioned
volume of the house. This means that the total return
airflow is equal to the supply to the conditioned spaces
plus the supply duct leakage. As the attic is considered
unconditioned space, the supply duct leakage causes
the conditioned portion of the house to be depressur-
ized, increasing air infiltration from the outdoors. To
account for part load operation, both the supply
leakage path and the portion of the return located
within the house are modulated. A CONTAM fan
control is applied only to the portion of the return
airflow that balances the supply duct leakage.
The dependence of air change rates on duct leakage

is modeled using the control capabilities of CONTAM
to modulate the airflows to the supply and return
points that represent the duct leakage. Implementing
controls in the CONTAM models to account for air
handling system run time employs a control strategy
that depends on the climate. This climatic dependence
is achieved by assigning each of the 19 cities to one of
four �Control modes.� The control modes are defined
based on the CDT because cooling occurs over a
smaller range of temperatures, and therefore the
control strategies are more sensitive to cooling data
than to heating. However, the decision of how to assign
each city to the groups is based on the HDT. Table 5
shows the HDT and CDT (ASHRAE 2009) and the
control mode assigned to each of the 19 cities, sorted

by CDT. Control mode 1 represents mild, Pacific
climates. Control mode 2 represents Northern climates
with cold winter temperatures and relatively mild
summer temperatures. Control mode 3 includes pri-
marily Southern climates with milder winters and
hotter summers. St. Louis is included with this group
despite its cold winters because of its high summer
CDT. The two cities in control mode 4 have very hot
summer design conditions and mild winter weather.
A CONTAM control strategy was created for each

of the four control groups. All the control groups have
an indoor set point of 23.5�C and a thermostat dead
band of ±2.0�C. Figure 1 shows an example of how
control group 3 responds to changes in outdoor
temperature. The control strategies are designed for
HDT and CDT equal to the average design tempera-
ture of the cities included in each group, and it is
assumed that air handling systems are sized to operate
two-thirds of the time when the system is at its heating
or cooling design condition. This control strategy is
applied using a linear controller that approximates
system run time effects by operating the system at a
fixed percent of design flow for each hour. For
example, at the design condition, the fan would operate
at full capacity for two-thirds of the hour. An upper
limit is placed on the controller so that it cannot exceed
100% fan on-time during an hour. This is required
because some conditions exceed those that would cause
the control strategy to produce >100% flow for a few
hours of the year. Data used to specify the controllers
are shown in Table 6.

Simulations

Annual simulations are performed using 1-h time steps
and TMY2 weather data (NREL 1995). Washington,
DC is modeled using data from Sterling, VA, a suburb
of Washington; Cincinnati, OH is modeled using
data from Covington, KY, a suburb of Cincinnati;
and Dallas/Fort Worth is modeled using weather data
from Fort Worth. All other weather data are for the
cities listed in Table 5.
CONTAM allows hourly air change rate data to be

output to a spreadsheet file. A Visual Basic� macro
was written for Microsoft Excel� to extract the hourly
air change rate data for each of the 209 houses and
consolidate it into a single file for each city. The data
were then further analyzed using a second macro that
counted the number of hours for each house that
occurred in various air change rate ranges or �bins�.
These bins are based on increments of 0.05/h, covering
the range from 0 to 2.5/h.
Bin data for each house and city are combined using

weighting factors to account for the incidence of each
house in the larger group of houses. These weighting
factors represent the number of each of the 209 house
models in each census division and are available from

Table 5 Heating (HDT) and cooling (CDT) design temperatures and control modes

City HDT �C CDT �C Control mode

Los Angeles 6.6 26.9 1
Seattle )4.6 27.3 1
Worcester )17.0 28.1 2
Buffalo )16.6 28.7 2
Boston )13.5 30.9 2
Minneapolis )26.1 31.0 2
Chicago )20.6 31.5 2
Denver )18.6 31.6 2
New York City )10.7 31.7 2
Cincinnati )14.9 32.4 2
Miami 7.9 32.4 3
Atlanta )7.3 33.1 3
Washington )8.9 33.3 3
Nashville )11.3 33.3 3
Birmingham )7.4 33.7 3
St. Louis )16.6 33.9 3
Corpus Christi 0.3 34.5 3
Dallas/Fort Worth 6.7 36.8 4
Phoenix 2.9 42.3 4
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the census data. Houses are then allocated to the two
or three cities representing each census division accord-
ing to the percentages shown in the rightmost column
of Table 3. The result is a weighting factor representing
the number of each house model occurring in each city.
For each house model in each city, the number of

hours in each air change rate bin is multiplied by the
weighting factor for that house to obtain the number of
house hours in that bin. These house hours are then
summed by house type (detached, attached, and
manufactured) to obtain the number of house hours
in each bin combined by city and house type. This total
number of house hours is then divided by the sum of
the house weighting factors for that city and house type
to obtain bin data for the weighted average, or �typical�
house of that type in each city.
The analysis method described above allows data to

be grouped together in any desired combination, for
example by census division. Infiltration rate frequency
distributions are also generated for: single-family
housing (combining detached, attached, and manufac-
tured) in each city; detached, attached, manufactured,
and combined single-family housing in each census
division; and detached, attached, manufactured, and
combined single-family housing for the entire United
States. These distributions can be analyzed to

determine various summary statistics and plotted as
frequency distributions.

Results

Single-family homes

Figure 2 shows distributions of air change rates for the
national average detached house, both as percentages
of hours in air change rate bins and as a cumulative
distribution. The lognormal nature of the distribution
is evident from the first figure and is seen for other
subsets of houses defined by type, location, and age.
Figure 3 shows cumulative frequency distributions by
house type, census division, and age. Table 7 shows the
air change rates as percentiles for the same categories
shown in Figure 3, as well as for the apartment
buildings by age. Table 8 summarizes the percent of
hours below various benchmark air change rates for
single-family houses in the nine census divisions and
the 19 cities that were simulated.
The results in Tables 7 and 8, as well as the third plot

in Figure 3, show a tightening of homes built after
1970, as evidenced by their lower air change rates. For
example, the newest houses are below 0.25 air changes
per hour for approximately 50% of the year, but
houses built before 1970 are below this threshold for
only about 10% of the year. Thus, one would expect
these groups of houses to have corresponding differ-
ences in energy and indoor air quality performance.
The results described previously are based on aver-

age air change rates weighted by the number of houses
in each city or region, or for each housing type. This
averaging process tends to reflect mean performance
and obscure more extreme (high and low) air change
rates, which can be more relevant in some situations. It
is important to examine these �extreme� cases and to

60

80

100

Design temperatures

0

20

40

–30 –20 –10 0 10 20 30 40 50

%
 A

ir
 h

an
dl

in
g 

sy
st

em
 f

lo
w

Outdoor temperature (°F)

Cooling

Heating

Deadband

Fig. 1 Example operating profile for control group 3

Table 6 Control data

Control mode Average CDT �C Average HDT �C

1 27.2 1.1
2 30.6 )17.2
3 33.3 )6.6
4 39.4 )1.7

HDT, heating design temperature; CDT, cooling design temperature.
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know what percentage of values fall within some
measure of �tight� or �leaky� infiltration conditions.
These extremes can be examined using the percentiles
described below.
Figure 4 shows the distribution of hours below

several threshold air change rates for US single-family
houses by percentile. Each line in this figure was

generated by sorting in order each of the 140 single-
family house models in each of the 19 cities by the
number of hours below some threshold (for example,
0.25 air changes per hour). In other words, these 2660

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

 o
f 

ho
ur

s

Air change rate  per hour

East North Central
East South Central
Middle Atlantic
Mountain
New England
Pacific
South Atlantic
West North Central
West South Central

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

 o
f 

ho
ur

s

Air change rate per hour

100

80

60

40

P
er

ce
nt

 o
f 

ho
ur

s

20

0
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Air change rate per hour

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

P
er

ce
nt

 o
f 

ho
ur

s

Air changes per hour

Built before 1940

Built 1941–1969

Built 1970–1989

Built 1990 or newer

Fig. 2 Air change rate frequency distributions for average detached house

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

 o
f 

ho
ur

s

Air change rate per hours

Detached houses

Attached houses

Manufactured houses

Fig. 3 Air change rate distributions by house type, census
division and age

Table 7 Air change rate percentiles

House category

Air change rate for each percentile (per hour)

5% 10% 25% 50% 75% 90% 95%

Single family – national average 0.10 0.16 0.27 0.44 0.70 1.00 1.21
Single family – built before 1940 0.17 0.25 0.39 0.58 0.92 1.33 1.57
Single family – built 1941–1969 0.14 0.21 0.34 0.54 0.81 1.10 1.28
Single family – built 1970–1989 0.09 0.14 0.22 0.36 0.55 0.76 0.89
Single family – built 1990 or newer 0.05 0.09 0.15 0.26 0.43 0.60 0.70
Detached – East North Central 0.11 0.17 0.28 0.42 0.75 1.10 1.31
Detached – East South Central 0.08 0.13 0.24 0.48 0.67 0.95 1.12
Detached – Middle Atlantic 0.14 0.20 0.30 0.41 0.76 1.09 1.29
Detached – Mountain 0.09 0.14 0.24 0.50 0.63 0.84 0.98
Detached – New England 0.15 0.22 0.32 0.44 0.82 1.18 1.39
Detached – Pacific 0.14 0.20 0.29 0.40 0.61 0.83 0.97
Detached – South Atlantic 0.07 0.12 0.22 0.48 0.63 0.88 1.04
Detached – West North Central 0.11 0.18 0.29 0.45 0.79 1.16 1.39
Detached – West South Central 0.09 0.15 0.28 0.42 0.67 0.90 1.06
Apartments built before 1940 0.11 0.16 0.21 0.31 0.46 0.61 0.72
Apartments built 1941–1969 0.09 0.13 0.18 0.29 0.42 0.56 0.65
Apartments built 1970–1989 0.06 0.10 0.15 0.23 0.39 0.49 0.55
Apartments built 1990 or newer 0.05 0.07 0.08 0.14 0.18 0.31 0.39
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combinations of house and city were sorted from
lowest number of hours below the threshold to highest
number of hours. After sorting the house/city combi-

nation, the weights representing each combination
were added to obtain the number of houses under
each threshold. These cumulative weights were then
divided by the total number of single-family houses in
the United States to determine the percentile ranking
for each house model. For example, considering a
threshold air change rate of 0.25/h (the uppermost line
in Figure 6), the house/city combination that corre-
sponds to the 80th percentile of leakiness is below 0.25/
h about 3000 h during the year and the 20th percentile
house/city combination is below this air change rate
<500 h each year.
Figure 4 shows how individual house models

(accounting for the climate in which they reside) vary
from the average house weighted by climate and
frequency of occurrence of that house. In the figure,
the �leakier� homes (leakier in terms of physical
leakiness combined with climate) have lower percen-
tile values (fewer hours below each threshold) and
tighter homes have higher percentile numbers (more
hours below each threshold). For example, the
weighted average single-family home (from Table 8)
experiences 23% of its hours (about 2000 h during
the year) below an air change rate of 0.25/h. Figure 4
shows that the leakiest 20% of homes spend only
about 460 h (5% of the hours during the year) below
0.25/h, whereas the tightest 20% of homes spend
3140 h (36 % of hours during the year) below 0.25/h.
When the higher threshold of 1.0/h is considered, we
see from Table 7 that the weighted average home
exceeds this threshold for 10% of its annual hours.
However, Figure 4 shows that the tightest 40% of
homes exceed this threshold rarely or never, and that
the leakiest 10% of homes exceed it for 5820 h (66%
of the year) or more.

Table 8 Percent of hours below key air change rates by geographic area for single family
houses

Geographic area

Percent of hours below benchmark air
change rates (%)

0.25/h 0.35/h 0.5/h 0.75/h 1.0/h

United States 23 37 57 79 90
East North Central division 22 35 52 73 86
East South Central division 30 44 61 82 92
Middle Atlantic division 17 30 48 70 84
Mountain division 26 41 61 85 95
New England division 14 28 48 68 82
Pacific division 18 36 61 86 96
South Atlantic division 32 47 65 85 94
West North Central division 21 34 51 72 84
West South Central division 23 37 57 82 94
Chicago 21 34 51 72 85
Cincinnati 27 42 60 79 90
Nashville 28 42 59 80 91
Birmingham 33 48 67 87 95
New York City 17 31 49 71 85
Buffalo 16 28 45 66 80
Phoenix 30 45 66 89 97
Denver 23 37 57 82 94
Boston 13 27 47 67 81
Worcester 19 33 53 73 86
Los Angeles 22 43 70 93 98
Seattle 9 19 38 69 90
Miami 41 58 78 94 98
Washington 25 37 54 77 90
Atlanta 32 47 67 87 95
Minneapolis 17 30 47 68 81
St. Louis 23 36 54 74 87
Dallas/Fort Worth 22 36 57 82 94
Corpus Christi 25 40 60 82 94
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Single-family homes – comparison with measured data

Several published studies have reported on measured
air change rates in large numbers of houses. In this
section, two such studies are compared to the simula-
tion results from this work.
Pandian et al. (1998) published statistical summa-

ries of air change rates measured using long-term
average, constant injection tracer techniques. The
data in the study are sorted by geographic region,
in addition to other measures. It should be noted that
the Pandian data are presented in percentiles (5%,
25%, 50%, 75%, and 95%). It is also important to
note that the houses in the measured dataset were not
selected to be statistically representative of the entire
United States, or even a given area, but simply
include all measurements that were available. For
example, the Pandian dataset includes very few
measurements in some regions, particularly the South-
east.
Figure 5 shows five figures that compare the results

of this study to the measured values in the Pandian
dataset. The first figure shows that comparison for
single-family houses in the entire United States. The
measured data correspond to the simulation results
reasonably well, with houses in the experimental
dataset generally having slightly higher air change
rates.
The Pandian data are also presented for four

geographic regions, which do not correspond to
standard US census regions. Thus, the experimental
data are compared to the predictions for these regions
using the modeled air change rate data for cities
located in the states from which the experimental data
were obtained. The �Northeast� region (second graph in
Figure 5) covers the states of CT, MD, MN, NJ, NY,
and WI and is shown with modeled data from the cities
of New York, Buffalo, Boston, and Minneapolis. This
experimental dataset includes 842 houses. The exper-
imental and modeled air change rates are similar, with
the experimental data indicating slightly lower air
change rates than the modeled data. This is consistent
with the low bias inherent to the long-term constant
injection tracer method, which has been noted by
Sherman (1989, 1990, 2006).
The �Northwest� region, shown in the third graph in

Figure 5, covers the states of CO, ID, MT, OR, and
WA and is shown with modeled data from Seattle
and Denver. This dataset includes 585 houses. Here,
there is more variation between the two modeled
cities, with houses in Denver having lower air change
rates than Seattle and matching the experimental data
more closely. Again, the differences between the
measurements and predictions are consistent with a
low bias in the measurement data.
The �Southeast� region, shown in the third graph,

includes houses from FL and TX and is shown with

modeled data from Miami, Dallas/Fort Worth, and
Corpus Christi. This dataset is smaller than the others,
containing only 62 houses. Among the modeled cities,
Miami houses have lower air change rates than those in
the Texas cities. The experimental dataset indicates
higher air change rates than obtained by modeling in
any of these cities. This may be attributed to the effects
of open windows, which impact the experiments but
are not included in the models, and are more likely to
impact results in mild climates.
The �Southwest� region, shown in the last graph in

Figure 5, includes houses from AZ and CA and is
shown with modeled data from Phoenix and Los
Angeles. The experimental data include 1482 houses.
Air change rates from the experimental dataset are
much higher than those obtained by modeling. Again,
this may be attributed to window opening in these
milder climates.
Overall, the data presented by Pandian et al. appear

to agree well with the predictions in this study,
particularly for the average United States and the
northern climates. For southern climates, particularly
those including Southern California, the experimental
data indicate higher air change rates. This finding
would be consistent with occupants opening windows
to increase air change rates during periods of mild
weather. This behavior was not accounted for in the
simulation study, but presumably would have occurred
during the air change rate measurements. This effect
would likely be more pronounced for milder climates
where there are more times during which windows
would be open.
In another publication, Wilson et al. (1996) summa-

rized air change rate data from two studies conducted
in the Southern California. Air change rates were again
determined using constant injection tracer gas tech-
niques over periods of 1 week or 2 days. Participating
homes were selected using a quasi-random design that
considered some housing characteristics, including
appliance type (gas, electric, etc.). However, the houses
were not selected according to the same parameters of
age, size, etc. that were used for this study. Also, as
most of the tests (600 houses) were conducted in 1984–
1985 and the remainder (75 houses) in 1991–1992, very
few of the houses would have been constructed after
1990.
Data for the Los Angeles area were summarized by

the month or season in which they were collected,
specifically January, March, July, and �Winter�
(between December and April). Average air change
rates measured during these time periods are identified
in Figure 6 in a plot of simulated air change rates for
the typical Los Angeles single-family house. The
comparison shows that these investigators measured
higher air change rates in the Los Angeles area than
would have been expected based on the simulations.
The average measured air change rate in January is
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0.58/h, a value that the simulations indicate would be
exceeded only 19% of the time. The March and winter
averages are 0.78 and 0.79/h, respectively; the simu-
lated air change rates would exceed this value only
about 5% of the time. The average July measurement
is 1.51/h, which the model predicts would be exceeded
only 0.2% of the time. These averages are obtained
using sample sizes ranging from 75 measurements for
the �winter� data to 571 measurements for the �March�
data.

A primary consideration in the difference between
these measurements and the modeling analysis is
again the existence of open windows. The simulations
did not account for window opening during periods
of mild temperature. In contrast, the measurements
were made under normal occupancy in which win-
dows were opened when the temperature was mild.
Wilson et al. discuss this effect in their report,
showing that the measured air changes rate nearly
double when the outdoor temperature increases from
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a range of 16.1–18.3�C to a range of 18.9–21.1�C.
Both March and July sampling periods include such
periods of mild temperature during which the mea-
sured air change rates are much higher. The �winter�
sampling period includes a smaller number of mea-
surements than the other groups, and temperatures
for this period ranged from 13.3 to 18.3�C. The
January measurements were taken when the outside
temperature was <15.6�C; thus, this group of
measurements is likely to include the fewest instances
of open windows. Thus, one might conclude that the
January measurements show more reasonable agree-
ment with the model�s predictions and that differ-
ences between the model and the other data are
likely primarily because of the effects of window
opening.
A recent study of residential air change rates

(Yamamoto et al., 2010) presents summary data for
three U.S. metropolitan areas based on about 500
measurements made between 1999 and 2001. This
study includes a range of housing types, i.e., site-built,
manufactured homes, and apartments. The median air
change rates in each geographic area were 0.87, 0.88,
and 0.47/h in Elizabeth NJ, Houston TX, and Los
Angeles County CA, respectively. For comparison, this
study found median air change rates (see Table 7) of
0.41, 0.42 and 0.40/h in the Middle Atlantic, West
South Central and Pacific census regions, respectively,
corresponding to these three cities. The median mea-
sured values were about twice as high as the simulation
medians for the first two locations, which is presum-
ably because of a combination of factors – window
openings, different housing types, and weather condi-
tions. It is not clear why the agreement is so much
better for the Los Angeles data.

Results – apartment buildings

Apartment buildings were analyzed to obtain national
average, census division, and city plots using the same
method used for single-family houses. It should be
noted that the specification of the apartment models
involved a number of assumptions related to building
layout, leakage between units, and HVAC systems for
which little published data are available. Also, the
leakage values used are based on measurement data
from single-family homes, because of a lack of
published data specific to apartment buildings. This
lack of data also prevents the results of this section of
the study from being compared to experimental data.
Persily et al. (2006) document the various assumptions
and other parameters used to develop the apartment
building models.
The data analysis also requires an extra step because

the weighting factors for apartment buildings refer to
the number of units, rather than the number of
buildings. Thus, the RECS weighting factor for each
of the 69 modeled apartment buildings was divided by
the number of units in each building to obtain a
building weighting factor. This building weighting
factor was then used with the building air change rate
data to determine air change rates in the weighted
average apartment building.
This method requires that the building air change

rate is equal to the average air change rate of the
apartments in the building, which is only true if the
building is made up of apartments of identical volume.
Assuming each apartment in a building has the same
volume, the building air change rate can be used for the
individual apartments in the weighting calculation.
This allows the building weighting factor, obtained by
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dividing the unit weighting factors by the number of
units in each building, to be used to generate the
national average data.
Figure 7 presents cumulative frequency distributions

for the national average apartment buildings in two
plots. The first divides apartments between those with
and without corridors and those with fewer than or
more than three stories. This distinction illustrates the
difference between apartments with and without out-
door air ventilation supplied to the corridor. In the
CONTAM models, apartments with corridors have a
100% outdoor air system that supplies 21 l/s per unit
opening into each corridor. This airflow serves to
maintain pressurization of the building and supply
makeup air to each unit�s exhaust fans. Air change rates
for buildings without corridors are based on infiltra-

tion, and their profile is similar to those for single-
family housing. Apartments in buildings with corridors
have a non-zero baseline air change rate, and generally
higher air change rates because of the effect of the
corridor ventilation. Because buildings with more than
three stories usually have corridors, and buildings with
fewer than three stories usually do not, this trend is also
apparent when the curves are differentiated according
to building height. However, there are some large two-
story building plans in the study that do have corridors
and ventilation systems, whereas some four- or six-story
buildings with small total numbers of units do not.
The second graph in Figure 7 shows the air change

rate distribution for apartments divided into four age
categories. Newer apartment buildings, while having
tighter construction, are also more likely to have
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corridors with ventilation systems. Thus, the weighted
average newer building has a larger number of hours
below each air change rate, but the distribution also
has a discontinuity near 0.4 air changes per hour,
where apartments with corridors operate for a large
percentage of hours each year.

Conclusions

The analysis presented in this paper has generated a
series of frequency distributions of residential infiltra-
tion rates for potential use in exposure analyses as well
as studies of residential energy use and indoor air
quality. Previous to this work, no database of residen-
tial air change rates was available that was based on a
representative collection of homes. While a number of
assumptions were necessary to generate these distribu-
tions, they constitute the first statistically representa-
tive datasets that account for building features of size,
age, and layout. As the buildings used in this analysis
are based on existing housing surveys, they can be
supplemented with other important data on the num-
ber and age of occupants, appliances, and other factors

that relate to occupant exposure for additional indoor
air quality and exposure analyses. Additional research
could improve the quality of the calculated distribu-
tions, primarily in the apartment buildings where there
is little data on airtightness and ventilation system
performance. Another key area where additional
research is needed relates to intentional and natural
ventilation, where information on window opening
patterns as a function of weather conditions and other
factors, plus improved airflow models of natural
ventilation buildings, would allow these distributions
to cover more than just conditions in which infiltration
dominates.
It is worth noting that the data used to generate

the house models used in the simulations, as well as the
measured data examined in the comparisons with the
predictions, is all at least 10 years old. As construction
practice continues to evolve and new energy efficient
design and construction techniques are pursued, it is
important to collect data and to simulate newer homes
to reflect the impact of these changes and to examine
the impact that they are having on energy and indoor
air quality.
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